AI 打星际取重大进步 DeepMind暴雪发神秘预告
AI打星际2难在哪里
2016年11月暴雪嘉年华上,DeepMind工程师宣布了训练AI打星际2的计划。算起来到现在已经两年多了。
DeepMind与暴雪合作的目标之一,就是开发一套足够好的人工智能系统,使之可以击败星际2人类选手。就像AlphaGo击败李世乭、柯洁一样。
然而,最终的目标是将其中使用的技术应用到现实世界,而不是让它始终停留在游戏里面。
“我们正在试图理解人类以及我们大脑的工作方式。”暴雪首席软件工程师Jacob Repp此前说,“如果我们能够得到这种高质量的数据流——人类玩游戏时的原始输入以及由此产生的结果——那就能成为研究人们行为的有用数据。”
对人工智能研究人员来说,星际2是个颇为有趣的挑战。
与国际象棋或围棋不同,星际玩家面对的是不完美信息博弈。“战争迷雾”意味着玩家的规划、决策、行动,要一段时间后才能看到结果。
DeepMind团队负责人Oriol Vinyals说,在星际2里一个玩家可能看到对手的侦察兵,然后又消失在视野中。对人工智能来说,记住他们遇到的东西,并且理解这可能表明敌人正在某个地方修建基地,这种记忆不仅需要保存,还要在未来针对某个信息调取出来。
“在星际2中,这非常重要,但却很微妙,可以将未来与过去联系起来。”他说,“很难建立因果关系,因为游戏中会发生很多事情。”
连著名的AlphaGo“人肉臂”黄士杰,也已经转到星际2的项目中。很多人认为在即时战略游戏中,AI的反应速度会成为极大的优势,但事实并非如此。
黄士杰此前解释称,围棋只有361个落子点,对AI来说全部游戏内容都是可见的。但星际2游戏有大量全黑的地图,玩家需要探索地图以及侦查对手动向,才能制定相应的策略。
几乎每次鼠标移动,都能视为一次落子。这种不确定性让星际2对AI来说,难度比围棋要高很多。
这有一段6分钟的视频,配好了中文字幕,能更直观一点的解释AI打星际2到底是怎么回事。
其中重点提到了AI打星际的三大难题:
1、不完美信息博弈
2、需要同时控制上百个单位
3、最难的是,需要制定长期策略
星际2的AI大战进展
为了教AI打星际2,暴雪和DeepMind在2017年8月,发布了星际2中加速AI研究的工具SC2LE。GitHub的传送门在这里:https://github.com/Blizzard/s2client-proto
工具包推出同时,他们还开源了一套星际2的迷你游戏,是星际2部分操作的抽象产物,AI能从中练习移动、采矿、建造单位等等技能。
到2018年6月,DeepMInd终于宣布,用关系性深度强化学习搞定了这些小游戏,在六个小游戏中达到了当前最优水平,其中4个还超过了大师级人类玩家。
想更深入了解可以阅读这篇论文:Relational Deep Reinforcement Learninghttps://arxiv.org/abs/1806.01830
不过,在星际2上有野心的不止DeepMind。
去年9月,腾讯AI Lab发布论文称,他们构建的AI首次在完整的虫族VS虫族比赛中击败了星际2的内置机器人Bot。虽然不是严格意义上的“自学”,AI还高度依赖人为归纳的信息,但迄今为止,这是我们在星际2项目上见到的最有建树的成果之一。
腾讯实际上开发了两个AI,基于扁平化动作结构的深度强化学习智能体TStarBots1,和基于分层动作结构规则控制器的智能体TStarBots2。
这两个AI都能在完整对战中击败等级1~10的游戏内置机器人(1v1虫族对抗,地图:深海暗礁
下一篇:没有了
相关文章:
相关推荐:
- [亚洲杯]AI 打星际取重大进步 DeepMind暴雪发神秘预告
- [亚洲杯]不舍高球梦 深大学子段禹丞的室内高尔夫创业路
- [亚洲杯]新阵容新气象!中国女子冰壶队获2019世锦赛门票
- [亚博体育]青岛魔兽创新高诠释何为统治力 强势回击全明星质疑
- [亚博体育]泰达西班牙拉练效果超预期 新援现身可能性不大
- [NBA]沃伦因右脚踝酸痛退出角逐,本场角逐不会回归
- [亚博体育]国足神秘助教-曾放弃尤文追随里皮 想逆转伊朗全靠他
- [NBA]周全阐扬!乔治砍下36分8篮板4助攻5抢断
- [亚博体育]疯狂1月!哈登追赶科比场均43.7分,联盟弧顶三分王,自揭源动力
- [英超]埃雷拉:索帅告知我们 要证实本身配得上这件球衣
网友评论: