U体育 | 最新更新
您的当前位置:首页 > 亚博体育 > 正文

目标是攻克FIFA游戏?DeepMind让AI自学传球配合

来源:usportnews 编辑:U体育 所属栏目:亚博体育 时间:2019-04-10 19:30:38
本文由YaBoSports2019年04月10日转载报道: FIFA FIFA

来源公众号: 量子位

报道 | 公众号 QbitAI

在攻克围棋、星际2这些游戏之后,DeepMind下一个目标可能就是足球了。

今天,这家英国的AI公司开源了机器人足球模拟环境MuJoCo Soccer,实现了对2v2足球赛的模拟。

虽然球员的样子比较简单(也是个球),但DeepMind让它们在强化学习中找到了团队精神。热爱足球游戏的网友仿佛嗅到了它前景:你们应该去找EA合作FIFA游戏!

让AI学会与队友配合

与AlphaGo类似,DeepMind也训练了许多“Player”。DeepMind从中选择10个双人足球团队,它们分别由不同训练计划制作而成的。

这10个团队每个都有250亿帧的学习经验,DeepMind收集了它们之间的100万场比赛。

让我们分别从俯瞰视角来看一下其中一场2V2的足球比赛吧:

DeepMind发现,随着学习量的增加,“球员”逐渐从“独行侠”变成了有团队协作精神的个体。

一开始蓝色0号队员总是自己带球,无论队友的站位如何。在经历800亿画面的训练后,它已经学会积极寻找传球配合的机会,这种配合还会受到队友站位的影响。

其中一场比赛中,我们甚至能看到到队友之间两次连续的传球,也就是在人类足球比赛中经常出现的2过1传球配合。

球队相生相克

除了个体技能外,DeepMind的实验结果还得到了足球世界中的战术相克。

实验中选出的10个智能体中,B是最强的,Elo评分为1084.27;其次是C,Elo评分为1068.85;A的评分1016.48在其中仅排第五。

如果按照Elo评分的计算规则,我们会错误地认为B对A的胜率应该达到62%。实际上A能在59.7 %的比赛中打赢或打平B。

上图展示了智能体A、B和C之间比赛的录像,定性地展示了足球战术策略的多样性。

为何选择足球游戏

去年DeepMind开源了强化学习套件DeepMind Control Suite,让它模拟机器人、机械臂,实现对物理世界的操控。

而足球是一个很好的训练多智能体的强化学习环境,比如传球、拦截、进球都可以作为奖励机制。同时对足球世界的模拟也需要物理引擎的帮助。

DeepMind希望研究人员通过在这种多智能体环境中进行模拟物理实验, 在团队合作游戏领域内取得进一步进展。

于是他们很自然地把2v2足球比赛引入了DeepMind Control Suite,让智能体的行为从自发随机到简单的追球,最后学会与队友之间进行团队配合。

作者系网易新闻·网易号“各有态度”签约作者

— 完 —

(责编:樊璐璐)
上一篇:姆巴佩还是内马尔?佛爷-我全都要!
下一篇:没有了

网友评论:

Copyright © 2002-2018 U体育 版权所有 标签

[xuanzang:sitemap]
Top